Introduction

Climate change will increase both drought and excessive rains generating a decrease in the availability of water for food production, with negative consequences for agriculture, as worsening erosion and even damage to crops themselves. Demand imposes the need to select new genotypes with favorable attributes to preserve the genetic base and the adaptation to climate change effects.

Materials and methods

Different patterns of water stress tolerance were identified between the evaluated rootstocks, however, FSV80 showed better tolerance levels to drought and a high adaptability to different water availability conditions.

IMC67, FSA20, FSV80 showed the best adaptation and tolerance to water excess suggesting a potential use in soils exposed to water excess or flooding risks.

Observed results could be used as an orientative adaptation for farmers, however, they must be correlated into the field and under different conditions like altitude, temperature, etc.

The presented results represent an approach for adaptation and mitigation of the climate change effects, to ensure and Smart-climate agriculture, climatic resilience and food safety.

References
