Exploiting the Cocoa genetic variation for flowering time and pod development period for climate adaptation: genetic variation and relationship to selected yield components

- Surja Chakrabarti
- Professor Path Umaharan
Importance of *Theobroma cacao* L.

- Contributes to a 130 billion USD chocolate and confectionary industries, worldwide
- Other products such as cocoa based beverages, alcohol, cosmetic and nutraceuticals
- Cocoa pulp and husk are also used as animal feed or fertilizer
Origin of cocoa in the South American Tropics

Cocoa a neotropical tree species indigenous to the Upper Amazon region of South America.

Motomayor et al (2008) identified

- 10 genetic groups cocoa dispersed in tropical Central and South America.
- Two hybrid populations, Trinitario (from Trinidad) and Refractario (from Ecuador)

The geographical diversity allows local adaptation to different environments.
The International Cocoa Genebank, Trinidad (ICGT) is considered the largest and most diverse collection of cocoa in the public domain. Identifying and exploiting the genetic diversity that exists in the collections in breeding is critical for the survival of the cocoa industry.

The collection contains over 2200 cocoa varieties collected from America and the Caribbean and includes related species of the genus Theobroma.
Strategies for drought tolerance/ resilience in cocoa

• Anatomy
 - Root architecture, fine roots
 - Canopy characteristics - Leaf morphology, size, stomatal density,

• Physiology
 - Osmotic adjustments (P & K accumulation in leaf)
 - Stomatal Conductance (stomatal sensitivity, leaf rolling, turgor)
 - Flushing behaviour
 - Interaction between drought & CO2 enrichment; drought & temp

• Biochemistry
 - Polyamine synthesis (general stress avoidance mechanism)

• Agronomy
 - Agroforestry and shade management – species dependent
 - Mineral nutrition particularly potassium
 - Water retention within fields
AVOIDANCE OF CLIMATE CHANGE

There is an opportunity to select for avoidance mechanisms as a means of developing climate tolerant cocoa genotypes.

In this study we investigated two such mechanisms:

- Time of flowering following the dry season
- Pod development period
Objectives

1. To determine the genetic diversity that exist within a representative subset of the germplasm held at the International Cocoa Genebank (core collection) for flowering time and pod development period

2. To correlate the selected traits for three consecutive years

3. To identify the interrelationships among the selected traits like flowering time, pod development period on yield related traits such as pod size, number of beans per pod, bean size and bean weight
97 accessions or genotypes were evaluated for

- Flowering time
- Pod development period
- Pod size
- Pod growth rate
- Bean number
- Bean weight (wet)
- Bean weight (dry)

Materials and Method:

➢ The flowering time has been noted during the first flowering after first rain following the dry spell for each tree for each accession

➢ The pods were individually tagged after pod sets and measurements (length and width) were taken in every 15 days up to maturity for each accession
Monthly average rainfall (mm) and temperature (°C) for the seasons a) 2016/17, b) 2017/18 and c) 2018/19 in Trinidad and Tobago (Data obtained from University Field Station, Valsayn, Trinidad and Tobago)
Results – Flowering time

- Significant differences among accessions were noted.

2016/17 (n=48)

2017/18 (n=81)
Flowering time

<table>
<thead>
<tr>
<th>Flowering Type</th>
<th>Varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Flowering</td>
<td>SIC, MO, CL, ICS</td>
</tr>
<tr>
<td>Late Flowering</td>
<td>ICA, AGU</td>
</tr>
<tr>
<td>Intermediate flowering</td>
<td>GU, AMELONADO, SIAL, NA, PA, JA, SIC, LV, LCTEEN, RED, AMELONADO, EET</td>
</tr>
</tbody>
</table>
Correlation between flowering time (days after commencement of wet season) of 32 cacao accessions evaluated over three years at Centeno, Trinidad.
Results – Pod development period

2016/2017 (n = 48)

Pod development period (days)

No of accessions

Mean 132
Range 90-210

2017/2018 (n = 81)

Pod development period (days)

No of accessions

Mean 149
Range 100-210

Mean 132
Range 90-210

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Results – Pod Length and Width

Correlation for pod length and pod width of mature pods of 32 cacao accessions evaluated over two years at Centeno, Trinidad.
<table>
<thead>
<tr>
<th></th>
<th>FT</th>
<th>PDP</th>
<th>Pod Len</th>
<th>Pod Wid</th>
<th>Pod Size</th>
<th>L/W</th>
<th>APGR</th>
<th>Bean #</th>
<th>Bean Siz</th>
<th>ABW</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT</td>
<td>1</td>
<td>0.15</td>
<td>0.22</td>
<td>0.11</td>
<td>0.17</td>
<td>0.16</td>
<td>0.11</td>
<td>0.01</td>
<td>0.32*</td>
<td>0.32*</td>
</tr>
<tr>
<td>PDP</td>
<td>1</td>
<td>-0.17</td>
<td>0.07</td>
<td>-0.06</td>
<td>-0.25*</td>
<td>-0.35*</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Pod Len</td>
<td>1</td>
<td>0.49*</td>
<td>0.83*</td>
<td>0.74*</td>
<td>0.82*</td>
<td>0.34*</td>
<td>0.39*</td>
<td>0.39*</td>
<td>0.39*</td>
<td></td>
</tr>
<tr>
<td>Pod Wid</td>
<td>1</td>
<td>0.88*</td>
<td>-0.23*</td>
<td>0.81*</td>
<td>0.40*</td>
<td>0.50*</td>
<td>0.50*</td>
<td>0.50*</td>
<td>0.50*</td>
<td></td>
</tr>
<tr>
<td>Pod Size</td>
<td>1</td>
<td></td>
<td></td>
<td>0.24*</td>
<td>0.95*</td>
<td>0.42*</td>
<td>0.53*</td>
<td>0.53*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/W</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.29*</td>
<td>0.08</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APGR</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>0.42*</td>
<td>0.45*</td>
<td>0.45*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bean#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.05</td>
<td></td>
<td>-0.05</td>
</tr>
<tr>
<td>BeanSiz</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99*</td>
<td></td>
</tr>
<tr>
<td>ABW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Pearson Product Moment Correlations between 10 agronomic traits investigated in 81 cocoa accessions at the International Cocoa Genebank at Centeno, during the 2017/2018 period.
Results – Pod Growth

Pattern of pod growth measured as increase in pod length (cm) and pod width (cm) over time (days) in 4 accessions of *Theobroma cacao* L in 2017-2018

MO 121 - a genotype with shorter pod development period

PA 120 – a genotype with longer pod development period than the others like Amelonado, IMC 105, NA 342 and SCA 6
<table>
<thead>
<tr>
<th>Character</th>
<th>2016/2017 (n =48)</th>
<th></th>
<th></th>
<th>2017/2018(n=81)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Range</td>
<td>cv</td>
<td>Mean</td>
<td>Range</td>
<td>cv</td>
</tr>
<tr>
<td>FT (days)</td>
<td>80</td>
<td>16 - 144</td>
<td>0.28</td>
<td>79</td>
<td>11 - 208</td>
<td>0.49</td>
</tr>
<tr>
<td>PDP (days)</td>
<td>143</td>
<td>97 - 210</td>
<td>0.15</td>
<td>149</td>
<td>115 - 206</td>
<td>0.10</td>
</tr>
<tr>
<td>PL (cm)</td>
<td>16.3</td>
<td>13.1 - 21.0</td>
<td>0.11</td>
<td>16.1</td>
<td>10.4 - 22.9</td>
<td>0.15</td>
</tr>
<tr>
<td>PW (cm)</td>
<td>7.7</td>
<td>5.7 - 9.8</td>
<td>0.13</td>
<td>8.5</td>
<td>6.3 - 11.1</td>
<td>0.10</td>
</tr>
<tr>
<td>PS (dm3)</td>
<td>4.17</td>
<td>2.00 - 7.45</td>
<td>0.33</td>
<td>5.02</td>
<td>2.0 - 11.0</td>
<td>0.31</td>
</tr>
<tr>
<td>BN (No.)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>22.1 – 49.0</td>
<td>0.16</td>
</tr>
<tr>
<td>BS (cm3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.27</td>
<td>2.43-18.70</td>
<td>0.38</td>
</tr>
<tr>
<td>ABW (gm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.25</td>
<td>0.94 – 1.96</td>
<td>0.14</td>
</tr>
</tbody>
</table>

The genetic variation for 8 morpho-physiological characteristics of 48 accessions (2016/2017) and 81 accessions (2017/2018) of *Theobroma cacao* evaluated at the International Cocoa Genebank, Trinidad situated in Centeno, Trinidad.

FT = Flowering time; PDP = pod development period; PL = pod length; PW = pod width; PS = pod size; BN = bean number; BS = bean size and ABW = average bean weight

* data was not collected for BN, BS and ABW during 2016/2017
Conclusion

• Significant differences with respect to flowering time and pod development period were observed.

• Despite large year-to-year variation in climatic conditions PDP and FT showed remarkable consistency across accessions over the three years of study, suggesting a strong genetic influence.

• There was evidence of genetic differences in PDP and FT across genetic groups from different geographical origins indicating that this variation could be an evolutionary adaptive response.
Conclusion

• No correlation was seen between pod development period and yield components; bean number, bean size and bean weight whereas no/weak correlation was seen between FT and yield components, indicating that these traits can be selected, independent of yield.

• Finally, the study shows tremendous opportunity to use flowering time and pod development period to select for local adaptability and drought avoidance.

• We are pursuing Genome Wide Association study to further understand the genetic basis for flowering time and pod development period.
References
Cilas C, Machado R, Motamayor JC (2010) Relations between several traits linked to sexual plant reproduction in Theobroma cacao L.: number of ovules per ovary, number of seeds per pod, and seed weight, Tree Genetics & Genomes, 6:219–226

Merci
Gracious
Thank you