Effectiveness of Biostimulants as a sustainable solution for improving production of cocoa trees in Ecuador Celine Diaz, Research & Innovation Manager in AgriTecno Ángel Llerena, Professor in Universidad de Guayaquil # BIOSTIMULANTS TRIALS IN COCOA ### Biostimulants: definition ### BIOSTIMULANT Substances or microorganisms applied to plants with the aim of improving nutritional efficiency, tolerance to stress and improve quality, regardless of its content. ## CHARACTERISTICS (Not a nutrition replacement Not a CPP replacement Better nutrient uptake Improve efficiency Optimize natural processes Stimulate metabolism Better resilience to stress Production quality #### Biostimulants: sustainable agriculture #### MOOVING TO A SUSTAINABLE AGRICULTURE - Optimize nutrients use efficiency Reduction of NPK - 2 Improve soil health microflora / structure Counter soil erosion - Provide better resilience to stress Water scarcity Climate changes - Upgrade plant defence against pathogens Reduction of Agrochemicals #### Biostimulants: plant extracts Plant extract Extraction process Concentration Low temperature BIOSTIMULANT EXTRACT Hydrolysis Fermentation Maceration Peptides & amino acids Organic acids Nutrients Sugars Vitamins **R&D** Innovation Exclusive extraction technology #### Biostimulants: composition & mode of action #### Biological Processes | regulation of
transcription,
ONA-templated | cell wall biogenesis | response to wounding | regulation
of seed
germination | chlorophyli
biosynthetic
process | regulation of
DNA-templated
transcription,
initiation | response to desiccation | sangularparoid
Broyreletic
pricess | spermine
biosynthetic
process | response to
salicylic sold | | arabinan
catabolic
process | negative
regulation of
programmed
cell death | |--|--|--|---|--|---|---|--|-------------------------------------|--|--|--|---| | | | | regulation of defense response to | response to hormone | regulation of
joemorals acid
mediated
signaling
pathway | sodium ion
transport | response to
high light
intensity | molecule of
bacterial | riboflavin
biosynthetic
process | spermidine
biosynthetic
process | xylan
catabolic
process | trehaiose
biosynthetic
process | | photosynthesis,
light harvesting | response to
light stimulus | regulation of defense response | bacterium | response
to salt | cell surface
receptor
signallog | cuticle | response | origin response to | response
to UV-B | starch
metabolic | protest . | response to | | | | defense response | ethanolamine
metabolic
process | | defense
response to
Gram-negative
bacterium | inositoi
metabolic
process | t to chitin
response
to insect | amido
biosynthetic
process | potassium | process auxin metabolic process glycolipid | chiorophyti
catabolic
process | dotense
response to
convoctes | | | regulation of salicytic acid biocynthistic process response to brassinosteroid | | trehalose
metabolism | exocytosis | | | | | transport
glycerol | | | | | xyloglucan
metabolic process | | protein-chromophere
Sologe | in response
to stress | inositol positive regulation of reports to water | photosysten
It assembly | phosphoton | and the second second | biosynthetic | THE RESERVE OF THE PARTY | pollen tube
guidance | | | | | | phosphate ion
homeostasis
coll wall organization | MAPK cancade | cellular
response to
light stimulus | esponse to patient | regulation
of systemic | Son. | auxin polar | regulation of
defense response | response to
blue light | Apil 1
complete resolution
activities (completion) | sphingolipid
metabolic
process | | | | | abscisic | | signaling acquired resistance | horses | transport | stomatal
movement | | phosphorolog
in grad
bereatherine | cathonylis
scill
metasolis | | | ethylene-activated
signaling pathway | | | acid-activated
signaling
pothway | response to
far red light | phototropism to war | response
to water
deprivation | double
fertilization
forming a
zygote and | glycosinolate
metabolic e | regulation of actin filament | fractions I A-triagmosphoto metabolite | cellular
response to | regulation
of marksters
structural | | | positive regulation
of defense response
to becterium | inositol
trisphosphate
metabolic process | cellular protein
modification
process | response to sematode | protein
initiator
methionine
removal | regulation
of defense
response
to fungus | defense
response to
becterium | S-glycosida
matabolic
process | polymerization
fruit ripening | | sait stress | organization
seed
germination | ### Biostimulants: formulation ### CHOOSING THE MOST SUITABLE EXTRACTS **BIOSTIMULANT EXTRACT** Need analysis **Custom formula** **Optimization** Observation of the needs of each crop and the phases on which we want to act to provide the most appropriate extracts Seaweed extract Micronutrients Macronutrients Vitamins Metabolic activators Know-how to choose the extract that meets the needs of the final product & addition of exogenous substances #### Biostimulants: selection for cocoa | Product | Type | Mode of action | | | | | |----------------------------|--|--|--|--|--|--| | Agri ful | Root
Biostimulant &
Soil health | Mixture of various extracts (Fermentation / Soaking) Transcriptomic: Phosphate use efficiency / Stress relieve Metagenomic Prebiotic: Promote health microflora | | | | | | Agri ful
Antisal | Root
Reduction of
Salt soil content | Calcium with amino acids extracts | | | | | | Tec amin
Max | Foliar
Growth stimulator
Stress reliever | Exclusive fermentation extract with amino acids Transcriptomic: Nitrogen use efficiency / Stress reliever Targeted analysis: Increase NUE enzymes and metabolites – reduce ROS production | | | | | | Tec amin
Flower | Foliar
Flowering and
Fruit setting | Extracts biostimulant + Boron + Seaweed extracts Transcriptomic : Increase production of trehalose & phosphate a sugar signelling molecule activating flowering process - Antistress action | | | | | # BIOSTIMULANTS TRIALS IN COCOA #### Trial in cocoa: Ecuador #### Trials done by Ing. Agr. Ángel Llerena Hidalgo Ph. D. Teacher - Researcher Faculty of Technical Education for Agricultural Engineering Ecuador is a leading country in cocoa production Specialty: fine aroma cocoa Volume: 200,000 t / year, Organization: small producers with low yields (99% of the total) Management: 80% use agrochemical products and only a few meet in associations. ### Trial in cocoa: Trial characteristics | Location | Hacienda Acessa Leasing S.A.
Km 58 de la Via a Playas,
Provincial del Guayas
2°22'25.7"S 80°18' 52.2"W | |------------------------|---| | Soil | Clayey
Average temperature: 28° C
pH: 6.7-6.8
Average anual rainfall: 600 mm | | Irrigation | Microsprinkler | | Experimental
Design | DBCA Random blocks
Products applied with motor pump | Treatments: Applied to the ground: T1, T3, T6Applied to the foliage: T2, T4, T5, T6 #### Trial in cocoa: Treatments | Treatment | Product | Dosis | Period of treatment | No. Application | Application | | |-----------|--------------------------------------|------------------|---|---------------------------------------|-------------|--| | T1 | Agriful | 5 L/ha | Every 15 days | 14 | Soil | | | T2 | Tecamin Max | 3 L/ha | Vegetative growth & stress | 3 | Foliar | | | Т3 | Agriful Antisal | 5 L/ha | Every 15 days | 14 | Soil | | | T4 | Tecamin Flower | 3 L/ha | Pre flowering and during flowering period | 3 | Foliar | | | T5 | Controlphyt PK | 3 L/ha | PK | 3 | Foliar | | | Т6 | Combined Program
(T1+T2+T3+T4+T5) | 3 L/ha
5 L/ha | See above | e above 14 (T1, T3)
3 (T2, T4, T5) | | | | T7 | Absolute Control | Х | X | | X | | # BIOSTIMULANTS TRIALS IN COCOA #### Results: Number of Flowers #### Results: Fruits | Treatment | Products | Fruit
Number | Fruit Weight
(g) | Yield / Plant
(g) | |-----------|--------------------|-----------------|---------------------|----------------------| | T1 | Agriful | 28.67 | 64.57 | 1 851.11 | | Т2 | Tecamin
Max | 29.67 | 64.83 | 1 923.39 | | Т3 | Agriful
Antisal | 27.33 | 69.79 | 1 907.47 | | Т4 | Tecamin
Flower | 33.33 | 63.40 | 2 113.06 | | T5 | Controlphyt | 29.00 | 58.08 | 1 684.44 | | Т6 | Combined | 29.33 | 66.66 | 1 955.26 | | Т7 | Control | 25.33 | 56.80 | 1 438.79 | #### Results: Yield #### Results: Conclusion #### GENERAL CONCLUSION - Biostimulants are considered as part of solution to improve agriculture sustainability and a essential partner to move to Smart agricultura. - Fully aligned with Sustainable Development Goals (SDGs). - Possibility to reduce agrochemicals and fertilizers to make cacao production more sustainable and environmental friendly. - ❖ A Good partner to improve production of small scale farmer and include them in global value chain. - 1 Biostimulants increased cacao yield (vs control). - **2** Tecamin Flower obtained the best yield, increasing flowers, fruits and grains. This product is focused on improving flowering key period in cocoa production. 2022 International Symposium on Cocoa Research (ISCR), Montpellier, France