The BarCo project: for the promotion of barrier crops to curb the expansion of the Cocoa swollen shoot virus in Côte d’Ivoire (June 2018 – December 2020)

Régis Babin, Franck Oro, Mathias Tahi, Pierre Walet N’Guessan, Emmanuelle Muller, Thomas Wibaux, Alain Déron Koffi, Emmanuel Kassin, Brigitte Guiraud, Christian Cilas

Côte d’Ivoire, France

International Symposium on Cocoa Research, Montpellier, France, 5-7 December 2022
Survey 2008-2016 (Aka et al., 2020)

300,000 Ha infected in 2018

Government program for cutting and replanting: 100,000 Ha by 2022

Insect vectors: mealybugs, omnipresent in cocoa plantations

BarCo CSSV, an expanding disease in Côte d’Ivoire
How to curb the spread of CSSV in CI?

Implement a set of cocoa plantations surrounded by barrier crops for **experimentation and demonstration**

Optimize innovation adoption by beneficiaries through a "**Living Labs**" approach including trainings

Improve and promote the use of barrier crops when replanting in CSSV infested areas

Characterize **barrier effect** on virus propagation and mealybug dispersion

Inventory of mealybug **natural enemies**

BarCo
Mechanisms of barrier effect

CSSV

Mealybugs

Parasitoids

Ladybirds

Dispersion

Ex: Coffee

BarCo
14 plots (4 ha) implemented in June 2019

Cocoa infected by CSSV

2 demonstration plots, 4 plots with coffee barriers, 4 plots with *Acacia mangium* barriers, 4 control plots with barrier crops replaced by cocoa
A “Living Labs” approach

✓ A functional collaboration platform with the farmer cooperatives SCAPB and SOCANC (≈ 700 cocoa farmers)

✓ Cooperatives, as partners of the project, in charge of most of field activities

✓ Involvement of farmers in plot implementation and maintenance
✓ CSSV symptoms appeared in 1 plot in June 2022 (2 years after planting)

✓ A control plot (barrier crop replaced by cocoa)

✓ Symptoms appeared mainly on cocoa in contact with old infected plantations
Results from the most infested plot

✓ Mealybugs *Pseudococcus longispinus* and *Ferrisia virgata*, early present on cocoa, but in small populations

✓ *Formicococcus njalensis*, first recorded in November 2020 and dominant from then

✓ *F. njalensis* populations first aggregated in a restricted area on the border of the plot

✓ Progressive invasion of the plot from an area in contact with the coffee barrier
Results from BarCo & Cocoa4Future projects, in different cocoa production areas of Côte d’Ivoire

- More than 30 morphospecies collected in Côte d’Ivoire (identification in progress)
- Parasitism rate > 10% in some sites
- Genera *Aenasius* sp. and *Anagyrus* sp. dominant among parasitoids and of interest for biological control
Coffee Cocoa
300 farmers trained

A wide acceptance of the innovation by farmers
A survey of farmers to improve innovation

What barrier crops would you use?

- Oil palm
- Cashew tree
- Garcinia kola
- Rubber tree
- Coffee
- Irvingia gabonensis
- Teak
- Avocado tree
- Terminalia superba
- Gmenila arborea
- Acacia
- Xylopia aethiopica
- Bixa orellana
- Terminalia ivorensis
- Mango
- Tieghemella africana
- Jatropha
- Ricinodendron heudelotii
- Bixa orellana
- Terminalia ivorensis
- Mango

https://forestcenter.iita.org/

Sanial Elsa, 2017
What next?

✓ For a better characterization of barrier effects:
 Since January 2021, the Cocoa4Future EU project (2020-2025) ensures plot maintenance and observation continuity, for 4 years more

✓ For a better inclusion of cocoa farmer expectations:
 Cocoa4Future project includes activities on co-conception of innovations with farmers

Production system sustainability and new dynamics of cocoa industry

- February 2020 - January 2025
- Funded by EU (DeSIRA) and AFD
- Total budget = 7 000 000 €
- ≈ 700 000 € for activities on CSSV
Many thanks!

https://barco.cirad.fr/