MULTI-LOCATIONAL NUTRIENT RESPONSE TRIALS FOR THE DEVELOPMENT OF COCOA FERTILIZER RECOMMENDATIONS

Joost van Heerwaarden¹
Ekatherina Vasquez¹
Stefan Hauser²
Alain Jacques Acka Kotaix³
Moses O. Ogunlade⁴
Ken E. Giller¹

¹Wageningen University (Netherlands), ²International Institute of Tropical Agriculture (IITA, Nigeria), ³Centre National de Recherche Agronomique (Côte d'Ivoire), ⁴Cocoa Research Institute of Nigeria (CRIN)
Background

ECUADOR
- 1 Core trial
- Located in Quito
- Institution: MARS and ESPOL
- Plantation age: 2 years

GHANA
- 2 Core trials
- Locations: Maabang and Buaiko
- Institutions: CRIG and Mondelez
- Plantation age: 3 and < 1 years

COTE D’IVOIRE
- 3 Core trials
- Locations: Divo, Trassale and Aboisso
- Institutions: CNRA, Barry Callebaut and Nestle
- Plantation age: 2 years (all)

NIGERIA
- 2 Core trials
- Locations: Owena and Ibadan
- Institutions: CRIN and IITA
- Plantation age: 3 and 2 years

CAMEROON
- 2 Core trials
- Locations: Nkowemwone and Mbalmayo
- Institutions: IRAD and IITA
- Plantation age: 2 years (all)

INDONESIA
- 1 Core trial
- Located in Jember
- Institution: Mondelez
- Plantation age: 2 years

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
What needs to be estimated?

\[
\frac{1}{y} = \frac{1}{Y_t} + \frac{1}{aN(N_s + N_f)} + \frac{1}{aP(P_s + P_f)} + \frac{1}{aK(K_s + K)}
\]

Greenwood et al. 1971

Optimum N, P, K (max profit)

- **Aims**
 - Optimum N, P, K (max profit)
 - High
 - Low

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Design

Target nutrient (e.g. N)

Remaining nutrients (e.g. PK)

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Design

Field heterogeneity

Replication/blocking
Theoretical proof of concept

\[y_{\text{obs}} = \frac{1}{Y_t} + \frac{1}{aN(N_s + N_f)} + \frac{1}{aP(P_s + P_f)} + \frac{1}{aK(K_s + K)} \]

+ Error\(_{\text{rep}}\) + Error\(_{\text{block}}\) + Error\(_{\text{plot}}\)

K\(_2\)O (+N)

Simulate

Estimate

P\(_2\)O\(_5\), kg/ha

\[y_{\text{obs}} = \frac{1}{Y_t} + \frac{1}{aN(N_s + N_f)} + \frac{1}{aP(P_s + P_f)} + \frac{1}{aK(K_s + K)} \]

\[y_{\text{obs}} \sim N+P+K+N:P+N:K+P:K+N^2+P^2+K^2 + \ldots \]
Theoretical proof of concept

Type III Analysis of Variance Table with Satterthwaite’s method

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>NumDF</th>
<th>DenDF</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>288495</td>
<td>144247</td>
<td>2</td>
<td>57.674</td>
<td>2.2244</td>
<td>0.11733</td>
</tr>
<tr>
<td>P</td>
<td>640078</td>
<td>320039</td>
<td>2</td>
<td>57.531</td>
<td>4.9352</td>
<td>0.01052*</td>
</tr>
<tr>
<td>K</td>
<td>527255</td>
<td>263627</td>
<td>2</td>
<td>55.226</td>
<td>4.0653</td>
<td>0.02254*</td>
</tr>
<tr>
<td>N:P</td>
<td>64556</td>
<td>64556</td>
<td>1</td>
<td>58.299</td>
<td>0.9955</td>
<td>0.32253</td>
</tr>
<tr>
<td>N:K</td>
<td>90186</td>
<td>90186</td>
<td>1</td>
<td>54.787</td>
<td>1.3907</td>
<td>0.24338</td>
</tr>
<tr>
<td>P:K</td>
<td>38992</td>
<td>38992</td>
<td>1</td>
<td>58.721</td>
<td>0.6013</td>
<td>0.44120</td>
</tr>
</tbody>
</table>

$R^2 = 0.94$

$R^2 = 0.85$

Full model

Simple model

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Theoretical proof of concept

True value

Estimated value
Early results (Ibadan, Nigeria)

Soil heterogeneity

Trait heterogeneity

$R^2 = 0.08$

$p = 0.01$
Random effects:

<table>
<thead>
<tr>
<th>Level</th>
<th>Variance</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>block:rep</td>
<td>1131.8</td>
<td>33.64</td>
</tr>
<tr>
<td>rep</td>
<td>673.7</td>
<td>25.96</td>
</tr>
<tr>
<td>Residual</td>
<td>4393.4</td>
<td>66.28</td>
</tr>
</tbody>
</table>

Non-systematic variation accounted for

Data quality

Blocking useful
Early results (Ibadan, Nigeria)

Estimated AE:
-1.3
0.3
1.2

Observed responses:
N, kg/ha
P₂O₅, kg/ha
Total bean yield (kg/ha)

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Conclusions

- A network of 11 core trials was implemented successfully.
- The experimental design offers potential for estimating all key parameters.
- First data looks promising. Good quality, non-systematic variation absorbed by design.
- Responses to nutrients are not yet visible (early days + effects of basal fertilizer).
- Developed procedures and forthcoming data will benefit the cocoa growing industry at large and will hopefully aid farmers in determining the best nutrient rates.
Partnerships:

<table>
<thead>
<tr>
<th>Project Lead/Donor</th>
<th>National Research Institutes</th>
<th>Inti Research Centres</th>
<th>Private partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>IITA</td>
<td>idh</td>
<td>UN@WCMC</td>
<td>Cargill</td>
</tr>
<tr>
<td></td>
<td>Wageningen</td>
<td></td>
<td>Olam</td>
</tr>
<tr>
<td></td>
<td>Norad</td>
<td></td>
<td>Mars</td>
</tr>
</tbody>
</table>

Thanks:

Didier Begoude, IRAD Cameroon
Cargele Masso, IITA, Cameroon
Aka Romain, Barry Callebaut, Cote d'Ivoire
Arthur Tapi, Nestle, Cote d'Ivoire
Amos Quaye, CRIG, Ghana
Eduardo Chavez, ESPOl (Mars), Ecuador
Erwin Prastowo, ICCRI (Mondelez), Indonesia
Leonard Rusinamhodzi, IITA, Ghana

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France