The CocoaSoils nutrient offtake model: preliminary results from on-farm trials

Lotte Woittiez, Wageningen University & Research, The Netherlands
Joost van Heerwaarden
Ekatherina Vasquez Zambrano
Kenneth E. Giller
Leonard Rusinamhodzi, IITA Ghana
Stefan Hauser, IITA Nigeria

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Overview of the talk

- Introduction to CocoaSoils
- Part 1: Offtake model
- Part 2: Application in CocoaSoils Satellite Trials
- Concluding remarks
Introduction to CocoaSoils

- Implementing ISFM to improve cocoa yields
- Consortium of private partners and national and international research institutes
- Funded by Norad
- In six countries (CdI, Ghana, Nigeria, Cameroon, Indonesia, Ecuador)
- On-station and on-farm research and dissemination
Part 1: The offtake model

- Calculates nutrient requirements based on nutrient offtake and immobilisation
- Calculations based on five components:

<table>
<thead>
<tr>
<th>YIELD</th>
<th>BIOMASS ACCUMULATION</th>
<th>NUTRIENT CONCENTRATIONS</th>
<th>RECOVERY RATES</th>
<th>EXPERT OPINION</th>
</tr>
</thead>
</table>

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Target yield
(kg dry beans ha\(^{-1}\) year\(^{-1}\))

Tree age
<table>
<thead>
<tr>
<th>YIELD</th>
<th>BIOMASS ACCUMULATION</th>
<th>NUTRIENT CONCENTRATIONS</th>
<th>RECOVERY RATES</th>
<th>EXPERT OPINION</th>
</tr>
</thead>
</table>

Cumulative wood DM (t ha\(^{-1}\))

Tree age

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Nitrogen concentrations (
%)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YIELD</td>
<td>BIOMASS</td>
<td>NUTRIENT</td>
<td>RECOVERY</td>
<td>EXPERT</td>
</tr>
<tr>
<td></td>
<td>ACCUMULATION</td>
<td>CONCENTRATIONS</td>
<td>CONCENTRATIONS</td>
<td>RATES</td>
<td>OPINION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_bean</td>
<td>2.2</td>
<td># In beans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_husk</td>
<td>1.0</td>
<td># In husks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_leaf</td>
<td>2.5</td>
<td># In leaves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_trbr</td>
<td>0.67</td>
<td># In trunk and branches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_root</td>
<td>0.75</td>
<td># In roots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YIELD</td>
<td>BIOMASS ACCUMULATION</td>
<td>NUTRIENT CONCENTRATIONS</td>
<td>RECOVERY RATES</td>
<td>EXPERT OPINION</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>

Recovery rates

(kg/kg)

recovery_n = 0.75 # For nitrogen (N)
recovery_p = 0.30 # For phosphorus (P)
recovery_k = 0.80 # For potassium (K)
Expert opinion (Yara)

Requirement per additional ton above 1 t dry bean yield

- 8.8 kg P
- 58 kg K
Part 2: Satellite trial preliminary results

- ~350 farms across four countries
Satellite trials: treatments

- 21 x 21 m plots, four per farm
- Treatment layout:
 - T1: Farmer practice + insecticide application
 - T2: Farmer practice + GAP
 - T3: GAP + national fertilizer recommendations
 - T4: GAP + offtake model fertilizer recommendations
Fertiliser recommendations

<table>
<thead>
<tr>
<th>Country</th>
<th>National recommendations (kg ha(^{-1}) year(^{-1}))</th>
<th>Model 1000 kg yield, 8-22 YAP (kg ha(^{-1}) year(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0</td>
<td>22.3</td>
</tr>
<tr>
<td>CdI</td>
<td>0</td>
<td>33.5-44.7</td>
</tr>
<tr>
<td>Ghana</td>
<td>0</td>
<td>26.0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>50.0</td>
<td>21.8</td>
</tr>
</tbody>
</table>

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Fertiliser recommendations

<table>
<thead>
<tr>
<th>Country</th>
<th>National recommendations (kg ha(^{-1}) year(^{-1}))</th>
<th>Model 1000 kg yield, 8-22 YAP (kg ha(^{-1}) year(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Cameroon</td>
<td>0</td>
<td>22.3</td>
</tr>
<tr>
<td>CdI</td>
<td>0</td>
<td>33.5-44.7</td>
</tr>
<tr>
<td>Ghana</td>
<td>0</td>
<td>26.0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>50.0</td>
<td>21.8</td>
</tr>
</tbody>
</table>

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Satellite trials: preliminary results of treatments

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Satellite trials: preliminary results of treatments

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Satellite trials: preliminary results of treatments

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Satellite trials: preliminary results of treatments

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Return on investment

2022 International Symposium on Cocoa Research (ISCR), Montpellier, France
Concluding remarks

- Offtake model predictions outperform national recommendations
- Large variability between countries
- Large variability between farms
- Higher ROI from offtake model recommendations
 - Despite modest yield increases
- Call to prepare optimum blends for different cocoa growing regions
Acknowledgements

- NORAD (funding) & project administration (IDH)
- Company partners
 - Olam
 - Cargill
 - Nestlé
 - ICL
 - Mars
 - Mondelez International
 - Barry Callebaut
- National research institutes (CNRA Côte d’Ivoire, CRIG Ghana, CRIN Nigeria, IRAD Cameroon)
- International research centres
- IITA (Bernard Vanlauwe, Richard Asare)
- Wageningen team
Thank you

Questions?